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Application of complex canonical point transformations to 
linear second-order differential equations 
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Departamento de Fkica, Universidad Nacional de Colombia, Santaf6 de Bogots, 
Colombia 

Received 18 August 1992, in final form 8 May 1993 

Abstract. We present a canonical method to solve onedimensional linear differential 
equations making use of pseudodifferential calculus. We apply two successive canonical 
point transformations on the cartesian momentum and position spaces to obtain a 
nonlinear complex-valued canonical transformation which maps a very simple linear 
differential equation into the desired differential equation. This method yields rz closed 
contour integral representation for the exact solution in terms of arbitrary iinctions, 
whichmay be determioed from the mapping equations in a similar way to that followed in 
classical mechanics. This method does not require the completeness condition on the 
intermediary states and avoids calculation of the kernel of the generator. We explicitly 
develop the case of second-order differential equations and give some standard examples 
to show how this method works. 

1. Introduction 

The advantage of classical canonical methods to solve H h t o n  equations is well 
known. These methods seek for the transformation which maps a given Hamiltonian 
system onto a simpler one whose solution is known or easier to determine. The 
desired solution may be obtained applying the inverse transfomation to the image 
solution [l]. 

Applications of these canonicd methods in quantum mechanics assume unitary 
canonical transformations in order to assure the completeness condition for the states 
of the image position and momentum ,operators. These unitary transformation allow 
one to expand the states of a Hamiltonian operator in terms of the states of a simpler 
one [2]. Semiclassical approximation methods commonly give an approach to the 
Schwartz kernel (or matrix elements in coordinate representation) of unitary genera- 
tors [3]. Complex-valued extensions for h e a r  transformations have been studied by 
Kramer et al. [4] and for classical canonical generators of nonlinear transformations, 
including criteria of quantum exactness, by Jung and Kriiger [5]. Representations in 
quantum mechanics of nonlinear and non-bijective canonical transformations have 
been discussed by Moshinsky and Seligman [6] and the unitary representation for 
sequences of real linear and point transformations has been discussed by Leyvraz and 
Seligman [7]. However, in these treatments the calculation of the kernel for the 
integral form of the generator is always invoked. 

By application of pseudodifferential calculus we present a canonical method to 
solve one-dimensional linear differential equations which does not require the 
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unitarity condition on the generator and avoids the calculation of its Schwartz kernel. 
We apply two successive canonical point transformations on the Cartesian momentum 
and position spaces to obtain a nonlinear complex-valued canonical transformation 
which maps a very simple linear equation into the desired differential equation. This 
method yields a closed contour integral representation for the exact solution in terms 
of arbitrary complex-valued canonical transformation which maps a very simple linear 
equation into the desired differential equation. This method yields a closed contour 
integral representation for the exact solution in terms of arbitrary complex-valued 
functions which can be determined from the mapping equations in a similar way to 
that followed in classical mechanics. 

In section 2 we deline notation and present the basic relations for normal ordered 
pseudodifferential operators (OPO) which establish a correspondence between an OPO 
and a well-behaved function defined on the classical phase space, called the symbol of 
the operator. In section 3 we study the.complex extension of canonical point 
transformations. After studying the solution of the canonicity condition on the image ~ 

position and momentum operators we determine the normal symbol of the generator 
and the corresponding mapping equations. In these sections we restrict ourselves to 
the case of one degree of freedom because we are interested in one-dimensional 
differential equations, however, generalization to more degrees of freedom is straight- 
forwardly obtained. 

The description of the method in an operational way is given in section 4 where the 
complex extension for the solution in terms of the normal symbols of the generators is 
included. Then, by the selecfion of a very simple initial equation in section 5, we 
construct a closed contour integral representation for the solution and explicitly 
describe how to obtain it in the case of second-order differential equations. Some 
standard examples which illustrate how this method works are given in section 6. 

2. Preliminary relations 

In this section we define notation and recall the relations that we will require 
concerning coordinate representation in quantum mechanics and pseudodifferential 
calculus. 

The Hermitian position and momentum operators 4 and$ satisfy the commutation 
relations [@, 41 =p ,p ]  = O  and 

[4,p] = 4 p  -pQ=ihi (1) 
where is the identity operator. 14) and Ip) denote the eigenstates of 4 and 0 
corresponding to the eigenvalues qs?R, (Cartesian coordinate space) and p e?Rp 
(momentum space), respectively. The coordinate representation of 4 andp is given by 

where a, is the gradient operator acting on ?Rq and (41 is the'adjoint of 14): (41 = 14)'. 
The states Iq), like Ip), are assumed to be orthogonal: 

(qlx) =d(q  - x ) =  (2zh)-' 
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where S(q - x )  is the delta Dirac distribution. 
Let lu) be an arbitrary state and A be a polynomial operator in j9 whose 

coefficients, which are functions of 4, are to the left of the momentum operators. By 
application of (2) the coordinate representation of Alu) leads to the following 
differential equation: 

(4 Iff 14 =A (x, -*aq)u(q)lz. (3) 

where (qlu)= u(q) is the coordinate representation of /U). 
On the other hand, standard definitions of ordered pseudodifferential operators 

(OPO) establish a one-to-one correspondence between an ow and a well-behaved 
function defined on the classical phase space 91, X CAp [SI. This function is called the 
symbol of the operator. 

The definition of a normal (or right) OPO (see section 4 in [9]) is 

where 9=-%a,, u(x)  belongs to the Schwartz space Sf’(%) and A(x,.$))EY’(%’). 
A@,.$) is called the normal (or right) symbol of the pseudodifferential operator 
A(x, 9) because if A(x, 5) is a polynomial or a convergent series in .$, the operator is 
obtained from the symbol replacing,.$ by 9 to the right of the coefficients and hence 
the left-hand side of this equation leads to the normal coordinate representation (3). 
In such a case an equivalent definition for a normal OPO, developed by Kriiger [lo], is 
given by 

A =A@,, a,) e x p w  exp(Pj9)l,=o,,=o 

A=A(d,a,)exp(pp)ip=O (5) 

01 

where A(q,p), the normal symbol of A, is obtained from the differential operator 
A(a,, a,) replacing aq by q and 8, by, p. ‘To show the equivalence we consider the 
coordinate representation of Alu): 

(riff lu) = A ( x .  8,) exp( -ihpa,)u(x) 

CrlAlu) = d.$A(x, .$)W, - 5) exp(-ihp8,)u(x)lP.~. I 
Replacement of the delta distribution by the integral form given above yields 

( x l f f l u ) = ( Z z h ) - ’ / / d . $ d u A ( x ,  5)  exp [ i }  --.$U u(x+  U) 

and hence the change of variable y =x + U leads to (4). 
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The normal symbol of a product of operators A18 can be obtained from (5 )  as 
follows: 

AB=A(B, 8,) exp(pfi)B(B, a,) exp(yfi)Ip=o.y=o. 
With exp(pp) B(B, 8,) = B(B - ihp, 8.") exp(p0) and the identity 

A(a,, ap)f(q7 p )  exp(q4) exp(pfi) 1q=o.p=0 

where f ( q , p )  is an analytic function, we obtain 
=U@., B)l.=a,.~=aJ exP(q4) expbfi) l q = ~ , , = ~  

AB=IB(B-ihafl, a)A(B,8)1.=s.s=B,}exp(p0)I,=~ 

AB=(A~B)(B, a,) exp(Pfi)I,=? 

(AoB)(q,p)= B(q - 

Comparison with 

where (AoB)(q,p) denotes the normal symbol of AB, leads to 

Y)A (q ,p )b= ,=A(x ,p  - *aJB(q,p)l,=,. (7) 
We call normal representation the pseudodifferential calculus developed from the 
definition of normal OPO, and this is the representation that we will use in the next 
sections. However, to study the Hermiticity of the image position and momentum 
operators under canonical point transformations is more adequate than the Weyl 
representation because of its symmetric definition. Therefore to end this section we 
obtain the relation between the normal and Weyl symbols for a given operator. 

With a similar procedure to that given for definition (9, it can be shown that 
Kriiger's definition for the Weyl ordering prescription [lo]: 

where A,(q,p) denotes the Weyl symbol of A, is equivalent to the standard definition 
(for the Weyl integral definition see, for example, equation (4.1) in [9]). The 
Hermiticity of exp(qQ+pp) shows that [Adq,p)]* corresponds to A' and hence that 
real Weyl symbols correspond to Hermitian operators, and conversely. Applying the 
identity exp(qq? +pfi) =exp(-*ihqp) exp(q4) exp(pp) and (6) with f ( q , p )  = 
exp(-$ihqp), we obtain 

A =A,@,, 8,) exp(qB+P@)I,=o,,=o, 

A = b p ( - 4  ih~.a,dAW(a, B)I.=a,,s=.+,I exdpfi) I,=o 

A ( q , p )  = exp(-3iha,a,)Aw(q7p). 

and comparison with (5) yields the desired relation: 

3. Complex canonical point transformations 

In this section we obtain the normal symbols for the transformation operator (or 
generator) and the image position and momentum operators for canonical point 
transformations on the Cartesian position and momentum spaces ?Rq and $7$,. These 
transformations will be called q-point CT and p-point CT, respectively. 

Let p be the operator of a q-point CT which maps the Hermitian position and 
momentum operators Q and 0 to the image operators =f(Q) and $ according to 

fl+f@)T @=PP 
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where f (n)  E%-(%*). The image operators must satisfy the same commutators as the 
original ones, i.e. [Q, & ] = [ P , P ] = O  and 

[Q, P] = 0s- a& = ihf (9) 
or explicitly f (B)p-Pf(Q)=ihf .  Equation (9) will be referred to as the canonicity 
condition. 

By application of (7), the normal representation of these equations yields the 
following system of differential equations for the normal symbols of f and P: 

[(q - *a,) -f(q)Iw?.P) = 0 

[ p  - P ( x ,  P - iha,)lr(q, p)l,=,= 0 

[ fk)  - f ( q  - fia,)lP(q>P) = 3. 

(10) 

(11) 

(12) 
A particular solution of (12) is 

for f ' (q)=a f (  )#O, while for the homogeneous part one obtains the following 
general wlutlon: Y q  

up to an additive function of q which may be absorbed by r(q)  in (13). Here b,(q), 
vk(q)eW(%) and vk(q) i s  one of the multiple solutions of the functional equation 
If(q) - f ( q  + m)l= 0. so 

is the most general solution of the canonicity condition for q-point CT. 

P ( q , p )  and write the last equation in the form 
For selecting solutions regular in h at h = 0, we analyse the h-dependence of 

P ( q , P )  = %(q,P)  + W 4 , P )  (14) 
where 

with s ( q )  = r(q)  + &b,(q). Here Po admits an expansion in powers series of h: 
OD 
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which is not regular at h = 0. 
Hence discarding ?PI from (14) we obtain the regulat solution 

This equation together with Q ( q , p )  = f (q )  are the mapping equations of a canonical 
point transformation on 91, in classical mechanics [l]. 

To study the existence of f for a given f ( q )  we recall equations (IO) and (11). 
Integration of (IO) yields 

where A.(q)e%”(%). With (15) and (16), equation (11) becomes 

and hence 

The last equation together with 

define the mapping equations for q-point CT on the phase space. The complex-valued 
function A(q) can be determined up to a constant factor from the knowledge of 

we analyse their 
P(q ,p )  for a givenf(9). 

In order to check the Hermiticity of the image operators 0 and 
Weyl symbols. By application of (8) to the normal symbols (17) and (18) we obtain 
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Since real Weyl symbols correspond to Hermitian operators we infer that even for 
f(q) real, when a is Hermitic, will in general not be Hermitic unless A2(q)/f’(4) = 
C, where Cis a constant. This analysis shows that (16), (17) and (18) define in general 
a complex-valued q-point CT even for f ( q )  real if A*(g)/f’(q)#C. 

Let now 0 be the operator of appoint  CT defined by 

Og-QO 0P = g(P) 0 

QdP) - g ( M = i h f .  

[P - g ( P  - *a,)lu(q,P) = 0 (19) 
[(q-&a,)- Q(x,~-iha,)lU(q,p)l,=,=O (20) 

k ( ~ )  -g(~-*aq)lQ(4,~) =* 

where g(x )  EV(%,), with the canonicity condition 

Normal representation of these equations yields 

In analogy with (12) a solution of the last equation regular in h at h = 0 is 
1 

Q(4,P)=g’(p)q+r(p) 

for g ’ ( p )  =a&)+O. 
A general solution of (19) is 

(21) 1 u(4,P)=B(P)exP i ; k - W - P 1 4  r ’ 

where B ( p )  e%*(%). With these solutions (20) becomes 
1 

r ( p ) =  -ih-a,lnB(g(p)) 
g (P) 

and hence 

which together with 

p ( 4 7 P ) = g ( P )  
define the mapping equations for p-point CT. As in the q-point CT case, for a given 
g ( p )  the complex-valued function B ( p )  can be determined up to a constant factor 
from the knowledge of Q(q ,p ) .  

shows that (21), (22) and (23) 
define complex-valued p-point CT even for g ( p )  real if g’(p)B’(g(p))#constant. 

The corresponding Hermiticity test for 4 and 

4. General method 

Let f201~o) = 0 represent the initial differential equation where /qo) is assumed known. 
By means of appoint  Cr satisfying Oa0= f2,Othe initial equation is mapped into the 
intermediary equation f2,lqJ = 0, where 

IqJ= 01%). (24) 
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Following with a q-point CT d e h e d  by Tal = Of' the intermediary equation can be 
mapped into the linear differential equation we want to solve: 81y}=O, where 

Hence Iy) = ?folq,d is obtained if the generators f' and # can be determined. We can 
think of lqJ, 1qJ and IW) as the eigenstates of the operators bo, h1 and 
Corresponding to the eigenvalue zero so that the canonical transformations# and f' 
map the states of h0 and 6, into states of a, and a, respectively, all of them 
corresponding to the same eigenvalue. These operators are in general non-Hermitian. 

lY)= f ' l d  ' (25) 

Applying dehition (S),  equation (24) becomes 
I d =  U(& a,) exp(ptj)Iqo)lp=o 

whose coordinate representation, called the wavefunction, is 

This definition, like calculations which led to the complex extension of p-point and q- 
point CT, makes no assumption of integral representations, delta Dirac distributions, 
Fourier transformations or completeness condition on the intermediary states lqo) and 
1qJ. So, for analytic functions, the last equation can be directly complexified through 
the following definition: 

with z, U E%, qo(z) an analytic function and U(z ,  U) the complex extension of the 
analytic normal symbol of # which,.according to (9, is defined by 

Q]1(q) = ('%)(q) E '(4, exP(-ihpa,)%(q)h=o. 

d z )  = (0~dCz) = U ( Z ,  a.) exp(-ihua,)~o(z)l.=o 

o= U@,, 8.1 exp(z4 exp(uP)I.=o,.=,. 
Recalling the normal symbol (21) one obtains for the solution of the intermediary 

equation the general expression 

Similarly, with (16) the equation (25) yields 

W,(z)=A(z)exp -LW-zIa, exp(-ihua,)qd~)I.=o {i I 
and hence 

From this equation one notes that the mer-Good transformation q(x)-y(x)= 
((Lt,S)x))-"'q(S(x)), with ~ € 3 ,  se% [ll], is precisely a particular q-point CT with 
f(x) = S(x) and A (x) = (&f(x))-"*. 

Applying the same complex extension to the initial and image differential equa- 
tions we obtain 

Y ( 4  =A(z)Q]1(f(z)). (27) 

(fioqo)(z) = Qo(z', -ihaz)Q]o(z) l L i  = 0 (28) 
QI(Z', -iha,)q,(z) lz'=*= 0 (29) 
Q(z', -iha,)Y(z)l&r=o. (30) 

In particular for 6 = 8- a, where 8 is a Hamiltonian operator, (30) yields for z real 
the standard coordinate representation of a time-independent Schrodinger equation 

W',  -ih&)ry(x)h~-z=av(x) 
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whose solution is then given by (27) with z=x. If 61,=#,-aoand 61,=l&-a,, the 
spectrum is mapped according to the sequence { a , } ~ { a J ~ { a } .  

It is worth noting the very simple expression (27) for the image solution under q- 
point CT. In particular, when one is interested in determining the states for a given 
Hamiltonian #= (2m)-'.8' + V(@ from a knowledge of the states of a simpler one 
I?,= ( h ) - ' Q 2  + V(@) from a knowledge of the states of a simpler one I?, = (2m)-'p2 + 
Vo(Q), it is possible that only a q-point CT may be required and hence the exact V(z) is 
directly given by (27) with 9&) = q$z). When a composite transformation is required 
the success of this method to give exact solutions depends on the adequate selection of 
61, (and hence of p,) so that equation (26) can be calculated exactly. 

The functions f, A ,  g ,  and B delining the soluti.ons may be obtained from the 
mapping equations (17), (U), (22) and (23) in such a way that they map the normal 
symbols of 61, and 61' into the normal symbols of 61, and 6, respectively. In the next 
section we explicitly describe this procedure. for the case of second-order differential 
equations. 

5. Closed contour integral representation 

Choosing for the initial equation the following simple form 

60190)~ 4190) = 0 
equation (28) yields 

zqo(z) = 0. (31) 
A solution of this equation defined for all values of z is given by the closed contour 
integral 

where y is a closed path of integration around the point w =  w,, for any w, in the 
extended complex plane (Riemann sphere) which is formed by compactification with 
the point a. Indeed, when woe'& the path can be defined by w(t)= wo+rexp(if), 
r>O, --nst<z, so that the left-hand side of (31) becomes 

zq&) = h exp( w ~ )  1;. dt [; exp(it)] exp(: exp(it)) . 
With the change of variable s = (zr/h) exp(ir) the integral is seen to vanish so (31) is 
fulfilled. The closed path around w,= m can be defined by w(t )  = (l/r) exp(if), r>O, 
-rcst<n, in such a way that under the inversion U = l lw the image path is a closed 
curve around U = 0 in the clockwise sense, so 

Again the integral is a total differential and (31) is fumed. 
For any of the above paths the value of 9,(z) is zero for z E %, so we have selected 

this particular value for the solution for z=O. When z= m a path around the origin 
leads 9,(z) to the same value. Therefore (32) is defined for all values of z. 
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Since we choose 8,=4, its image operator under a p-point C'I is precisely the 
image position operator whose corresponding symbol is given by (22), i.e. 

which yields the following expression for the intermediary differential equation (29): 

The coefficients of this differential equation are necessarily h e a r  in z becausep-point 
CTs are linear io Q. If we assume that (34) is a differential equation of finite order we 
conclude that l/g'(u) is a polynomial whose grade cannot exceed the order of the 
differential equation, the same being valid for (l/g'(u))a" In B(g(u)).  However, 
B(g(u))  may have poles of higher order or other kind of singularities. 

A solution of (34) is then obtained by replacement of (32) in (26): 

With w=g(u), dw=g'(u)du, we obtain 

q , ( z ) = f  dug'(u)B(g(u))exp 
Y 

(35) 

This is the general expression for a solution of the intermediary equation i f B ( g ( u ) )  is 
analytic and single-valued on y. For non-trivial solutions the allowed closed paths of 
integration, which may lead to different integral representations, must contain one or 
more singularities of the integrand. Therefore the study of the allowed solutions turns 
into an investigation of the analycity of B(g(u)) and used of functional analysis 
technics. 

Continuing the procedure, under a q-point CT the intermediary equation is 
mapped into the desired differential equation (30), whose solution is directly obtained 
by inserting (35) in (27): 

Since a q-point CT is linear inp, the differential equations (30) and (34) must have the 
same order. Since their coefficients may be different, new singularities of (30) with 
respect to (34) have to be introduced by the functions f and A. For non-trivial 
solutions the allowed paths of integration in (36) are the same as in (35). However, if 
(30) is a time-independent Schrodinger equation the functionsf(z) and A ( z ) ,  as well 
as the singularities of B(g(u)) ,  must yield bounded solutions in the square mean. In 
the examples we will see that the energy a is one of the parameters that define the 
kind of singularities of B(g(u)).  In principle this method may yield states for the 
continuous and discrete spectra. One way to obtain discrete states is by selecting a so 
that the singularities of B(g(u))  become poles of order n and choosing a path of 
integration around one pole in a domain where the integrand in (36) is analytic. For 
continuous states we must select a real and study the possible paths which may lead to 
physical solutions. 
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We now explicitly describe how the functions g'(u) ,  B(g(u)) ,  A(z) and f(z) may 
be obtained when (30) is a second-order differential equation. That is when Q(z, U) is 
quadratic in U: 

Q(z,  4 =f1(z)u2 +f*(z)u +f3(4 (37) 
where h(z), i = l ,  2, 3,  are, in general, polynomials nonlinear in z. A similar 
procedure may be followed for other choices of 8. 

According to (22) and (23) the first transformation which maps & into &, is 
characterized by the following mapping equations: 

1 
Q,(z, U) =- {z - iha, In B(g(u)))  

g'(u) 

pl@, u)=g(u).  

Ql(z, u)=(az+b)u2+(cz+d)v-al (38) 

Since 8, = &,, its normal symbol must be linear in z and may have the form 

= hl(z)u2 + h&)u - al 

where a, b, c, d arid a, are complex parameters. From (33) and (38) we obtain 

1 - {z - iha. In'B(g(u))}= (au + c)uz + u(bu + d) - a, 
g'(u)  

so 

i u(bu+d)-a, 
a, In B(g(u)) = - h u(au+c) ' 

Integration of the last equation leads to 

h C  

where Cis a complex constant and a#O, c#O. When a=O we obtain 

1 
g'(u)=- 

CU 

i b  i d  i a ,  
WC h c  h c  B(g(u))  = c exp( - - uz+- - v ---In u 

These equations show that the order and position of the poles in g' (u) ,  as well as the 
singularities of B(g(u)), depend on the value of the five parameters a, b, c, d and a,, 
which at the same time are dehing the coefficients of the intermediary differential 
equation. 

The second transformations maps &, into the desired & whose normal symbol in 
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the case of second-order differential equations is given by (37). Recalling (17) and 
(18) the corresponding mapping equations are 

1 
P2(z, U) =fq {U + iha, lnA(z)}. 

Qz(z, 0) =f(z). 
To obtain the symbol of 8 in terms of Q2(z, U) and P2(z, U) we first determine 0 in 
terms of Q2 and P2. Since 8, = hl(tj)j2 + h2(4)fi - a1 and 

T i l l  ={hl(&2)B~P2++2(Q2)B2-~3f= bf 
we obtain 

8 = h l ( & 2 ) B ~ ~ 2 + h 2 ( & z ) ~ 2 - a l .  
Here we have used f t j  = Q 2 f  and ffi = pz?: Applying (7) together with the mapping. 
equations it follows: 

Q(z, U) = h l ( f ( 4 ) ( P 2 4 ) ( ~ ,  D )  + h21f0)P&,  U) -a1 
where 

and hence 

Therefore the exact symbol of 6 differs from the classical expression Q(r, U)= 
Ql(Q2(r, U), P2(r, U)) in the second term on the right-hand side of (43). Equating (37) 
and (43) one obtains the equation from which f ( r )  and A(z)  can be determined. 

We note that'this method allows one to work with canonical transformations to 
construct exact solutions by applying the standard methods of classical mechanics 
under the condition that the normal symbol Q(z, U) in terms of Q2(r, 0) and Pz(r, U) 
represents exactly 8, for which (43) must be fulfilled in the case of second-order 
differential equations. 

6. Examples 

We now present some standard examples for second-order differential equations to 
show how this method works and that (36) yields known closed contour integral 
representations for the solution. 

6.1. KummeJs differential equation 
Let us consider Kummer's differential equation which has a wide range of appljcations 
in physics [12,13]: 

where u1 and B are complex parameters. The corresponding symbol for 8 is 
Q(z ' ,  -ih~z)~(z)~z8=x ={z(-iha,)2+ ( B  - z)(-iha,) - a&+) = 0 

~ ( Z , u ) = t u z + ( ~ - Z ) u - a , .  (44) 
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Since the coefficients are linear in z only a p-point CT is required to map 8, = 4 into 
8. In this case y(z)  is given by (35) with pl(z) = y ( z )  or by (36) with f ( z )  = L and 
A ( z )  = 1 which correspond to the identity transformation for the second step. That is 

y(r )  = fy dug’(u) B(g(u))  exp - uz . (: ) 
Since equation (38) witha=l ,  b=O, c = - 1  andd=Byields (44), from (39) and (40) 
we obtain 

so 

vfi,*,(z) = Cf?du(u - l ) ( ~ * ) ~ - ~ ~ ~ ) ~ ~ - l ( ~ ) ( ~ ~ ) ~ ~ ~ l  exp - , (I: ) (45) 

This equation gives the closed contour integral representation of Kummer’s differen- 
tial equation up to the constant factor C. For general values of B and al the function 
B(g(u)) is analytic on the complex plane except on the branch cuts of In(o-1) and 
In(u). Selecting these branch cuts on the real axis from 1 to m and from 0 to - m , 
respectively, a path of integration going counterclockwise around the branch points 
u = l  and u=O and then clockwise around the same points, the equation (45) for 
Yt(ij3IA) >Yt(ia,/h) >O yields 

where DI is a constant factor depending on the parameters B and al. This equation is 
the known real integral representation of the contluent hypergeometric function (see 
equation (13) Chapter 1 in [12]). 

6.2. Whinaker’s differential equation 

Let us now study Whittaker’s differential equation: 

1 1  
2 4  ~(-ih&)~-,3/2(j3/2+ih) ---z+B/2- a 

The corresponding normal symbol for the pseudodifferential operator is 

1 1  
Q(z, U) = zuz -8/2(B/2 + ih) ;-;z +B/2 - a. (47) 

Whittaker’s differential equation is the image of Kummer’s equation under the 
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q-point CT which eliminates the Linear term in a, as we show below. 
Taking Kummer’s equation as the intermediary equation we have 

Q l ( Z ,  U ) = Z U Z + ( B - Z ) U  - Q I .  

With f(z) = z the mapping equations for the second step are 
QLz, 0) =f(z) P2(z,u)=u+iha,InA(z) 

and (43) leads to 
Q(z,  U) = zu2 + (2ihz8, In A(z) + f l -  z)u + [-h2z(8. InA(z))’ 

+hZ& InA(z) + (B-z) ihd, InA(z)] -pt.  

Now choosing A(z) so that the linear term in U vanishes we obtain 

where C is a constant factor. With this choice and al=  Q the intermediary symbol is 
mapped into (47), so that with vl(z) given by (45) the equation (36) yields 

exp( uz) 
du(u - i)(~h)8-(~~)a-l(u)(~8)Q-l 

which is the closed contour integral representation for a solution of Whittaker’s 
equation up to the constant factor D’. For %(i~/h)>91(ia/h)>O and the same 
branches and path of integration given for (49 ,  the last equation yields the known real 
integral representation for the solution (see equation 3a in chapter 2 of [12]): 

where N is a constant factor and q8,. is given by (46) 

6.3. The harmonic oscillator 

A standard differential equation in physics is that of the harmonic oscillator: 

for which 

1 mu2 
n(Z, U) =H(Z,  U) - Q = - U’+ - 2’- U. 2m 2 

where H(z ,  U) is the complex symbol of the Hamiltonian operator for a particle of 
mass m describing a simple harmonic movement with angular frequency w E 91. 

Under .the p-point CT characterized by 
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Qo(z, U) is mapped into the intermediary equation Q,(z, U)= bu2+czu -al. Under 
the q-point CT dehed by 

f (z)  = az 

where C i s  a constant, theintermediary equation is mapped into 

With az=4ihmc, b=2ihc, c =  +iw and a,=a+fihc,.this equation yields the desired 
symbol (48). From (36) one infers that for physical solutions A(z) must converge for 
%+a for which we select the positive value of c. Hence (36) for z real leads to 

e.P(-u’) exP(2Bxu) (49) d ( h )  - 112 v(x)=Nexp(-TB x du(u)- 22!i 
where = - ( m w / f ~ ) ” ~  and Nis  a constant factor. For general values of a, the function 
B(g(u))  and the integrand are analytic on the complex plane except on the branch cut 
of h(u):To obtain discrete states (-a/(hw) +f) must be a negative integer, because 
for these values of a the branch point U = O  of B(g(u))  becomes a pole of order n. 
With the path of integration encircling the origin the integral in (49) leads to the 
known closed contour integral representation for the Hermite polynomials Hn(Bx) 
(see equation 22.10.9 in [14]) and hence 

1 Z Z H  vn(x)=Nexp(-sB x 1 .(Bx) 
gives, up to the constant factor N, the familiar form for the eigenstates of the 
harmonic oscillator corresponding to the eigenvalues a=hw(n ++) (see equation 
(30.19) in [lq). 

7. Conclusions 

The complex extension for the point transformations as well as for the solution were 
obtained in sections 3 and 4 thanks to Kriiger’s definition for ordered pseudodifferen- 
tial operators, which permits one to avoid the use of integral representations like 
Fourier transformations and delta Duac distributions. 

We have shown that a closed contour integral representation for an exact solution 
of one-dimensional linear differential equations can be obtained by canonical methods 
mapping the simple equation (31) into the desired differential equation under two 
successive complex-valued point transformations on the Cartesian momentum and 
position spaces. This method may lead to new integral representations and has the 
advantage that the transformations can be worked out in a classical way mapping t 
into the exact symbol of the desired image pseudodifferential operator. When this 
method is applied to solve Schrodinger equations the unitarity condition on the 
generator is not required and hence the problem of the completeness of the 
intermediary states is avoided. 

For future researches it should be interesting to study higher sequences of these 
point transformations starting with the same equation (31) to obtain exact solutions or 
uniform approximations of a wide range of differential equations. To obtain this, the 
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crucial point is the exact calculation of (26) for a third step or a formal determination 
of an approximation for this equation, for example up to O(fiz). Other possibilities 
might consider canonical transformations, different from point transformations, for 
which a similar study to that carried out in section 3 should be made. 
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